

Water Development Commission June 14, 2016

Erica Gaddis, Ph.D. Utah Department of Environmental Quality

Anatomy of Gold King Mine

Cross-Section of Gold King and Sunnyside Mines

8/8/2015 0900 Confluence of Animas and San Juan River Near Farmington, NM

Utah Monitoring Response Objectives

Protect Public Health

- Address real and perceived public health threats
- □ Timely data (24 36 hour turnarounds)
- Appropriate screening values

Protect Environment

- Chronic effects on aquatic life associated with legacy metals loading in system
- Comparison to water quality standards
- Appropriate background comparison (Pre- and post-plume data)

UDEQ Sampling Sites

Dissolved Aluminum

Water Quality Screening

			Utah WQ St Juan Rive	andards (R317- r Uses met	-2-14) for tals]	San [Dissolved]	Recreational	Agricultural Screening Values [Dissolved Metals]			
Analyte	CAS #	Units	1C (Domestic)	3B (warm water fish) [1-hour]	3B (warm water fish) [4-day]	4 (agriculture)	Screening Values [Total Metals]	Livestock Water (ug/L)	Long-Term Irrigation Waters (ug/L) [NAS, 1972]	Short-Term Irrigation Waters (ug/L) [NAS, 1972]	Analyte
Hardness		mg/L						180 mg/L (UA)			Hardness
Aluminum	7429-90-5	µg/L		750	87		620,767	5,000 (NAS)	5,000	20,000	Aluminum
Antimony	7440-36-0	µg/L					248	No Data Available	No Data Available	No Data Available	Antimony
Arsenic	7440-38-2	µg/L	10	340	150	100	186	200 (NAS)	100	2,000	Arsenic
Barium	7440-39-3	µg/L	1000				124,159	No Data Available	No Data Available	No Data Available	Barium
Beryllium	7440-41-7	µg/L	<4				1,242	No Data Available	No Data Available	No Data Available	Beryllium
Cadmium	7440-43-9	µg/L	10	2	0.25	10	62	50 (NAS)	10	50	Cadmium
Calcium	7440-70-2	µg/L						500,000 (UA)	No Data Available	No Data Available	Calcium
Chromium	7440-47-3	µg/L	50	16 (VI); 570 (III)	11 (VI); 74 (II)	100	410	1,000 (NAS)	100	1,000	Chromium
Cobalt	7440-48-4	µg/L					7,931	1,000 (NAS)	50	5,000	Cobalt
Copper	7440-50-8	µg/L		13	9	200	6,208	500 (NAS)	200 5,000		Copper
								Limit Not Considered			
Iron	7439-89-6	µg/L		1000	1000		851,582	Necessary (NAS)	5,000	20,000	Iron
Lead	7439-92-1	µg/L	15	65	2.5	100	910	100 (NAS)	5,000	10,000	Lead
Magnesium	7439-95-4	µg/L						250,000 (UA)	No Data Available	No Data Available	Magnesium
Manganese	7439-96-5	lucif					31.040	Necessary (NAS)	200	10.000	Manganese
Mercury	7439.97.6	uo/I	2		0.012		1 242	10 (NAS)	No Data Available	No Data Available	Mercury
Molyabdenum	7439.98.7	ugil	-		0.012		3 104	No Data Available	10	50	Mohrebdenum
Nickel	7440-02-0	un/l		468	52		17 480	No Data Available	200	2 000	Nickel
Potassium	7440-22-4	uo/L						No Data Available	No Data Available	No Data Available	Potassium
Selenium	7782-49-2	µg/L	50	18.4	4.6	50	3,104	50 (NAS)	20	20	Selenium
Silver	7440-22-4	Jug/L	50	1.6	-		3,630	No Data Available	No Data Available	No Data Available	Silver
Sodium	7440-23-5	µg/L						1,000,000 (UA)	No Data Available	No Data Available	Sodium
Thalium	7440-28-0	µg/L					25	No Data Available	No Data Available	No Data Available	Thalium
Vanadium	7440-62-2	µg/L					6,208	100 (NAS)	100	1,000	Vanadium
Zinc	7440-66-6	µg/L		120	120		217,786	25,000 (NAS)	2,000	10,000	Zinc
TDS		mg/L						1200 (Utah)	600,000-1	000,000 (NAS)	
pH	pH 6.5-9 (Utsh) 4.5-9 (NAS)										
	RMEG: ATSDR Reference Dose Media Evaluation Guide EMEG: ATSDR Environmental Media Evaluation Guide RSL: EPA Regional Screening Level										

Aquatic Life Uses

No Exceedence Above Screeni			g Level			Prior	to Plum	e Arriv	al		Estimated	l Plum	e Arriva	í –			Post F	Plum e A	rrival		· · · · · ·									
			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium Zinc					
	Uta	h Aquatic Life	e Use Criteria 1-hr	750		340	1		2		570		13	1000	65				1	468	i. I	18.4	1.6	-		120				
	Utah	Aquatic Life l	Jse Criteria 4-day	87		150	0		0.25		74		9	1000	2.5			0.01	į. I	52		4.6				120				
Monitoring Location	Site Description	Collection Date	Collection Time	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/ L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	mg/ L	ug/L u	g/L ug/L				
		8/8/2015	1:23:00 PM	47400	0.524	1.34	222	0.0369	ND	51.5	ND	0.127	2.24	95.8	ND	7.85	2.94	ND	1.87	ND	2.96	0.722	ND	32.2	ND 4	.86 15.3				
		8/9/2015	12:02:00 PM	33900	0.341	0.628	274	ND	ND	50.6	ND	0.0817	2.48	119	ND	6.86	2.69	ND	2.01	ND	2.61	0.563	0.03	28.5	ND 1	.76 18.5				
		8/9/2015	3:05:00 PM	26700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		8/9/2015	6:00:00 PM	24600	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		8/9/2015	9:02:00 PM	31000	0.347	0.946	341	0.0356	ND	46	ND	0.139	3.47	198	0.274	6.3	4.14	ND	1.94	ND	2.38	0.535	ND	30	ND 2	.07 15.4				
		8/10/2015	9:11:00 AM	39900	0.458	0.994	233	ND	ND	44.6	ND	0.0673	3.21	103	0.391	6.01	1.64	ND	2.03	ND	2.51	0.582	ND	34.1	ND 1	.74 19.7				
		8/10/2015	2:06:00 PM	43700	0.711	1.3	220	0.0905	ND	44.2	ND	0.407	3.35	732	1.04	6.02	12.8	ND	1.92	0.838	2.72	0.645	0.06	35.1	ND 3	.64 18				
		8/11/2015	8.50.00 AM	77000	0.364	1.72	451	0.102	ND	39.8	ND	0.488	4.85	1520	1.1	5.05	19	0.02	1.65	1.19	3	0.972	ND	43.7	ND	3.9 19.1				
		8/11/2015	1:17:00 PM	56900	0.0516	1.33	334	ND	ND	41.7	ND	0.155	3.03	300	0.27	5.11	5.1	ND	1.58	ND	2.91	0.76	ND	31	ND 2	40 14.9				
		8/12/2015	9:50:00 AM	31100	0.585	0.879	1/8		ND	52.1	ND	0.0014	2.39	ND	ND	6.07	1.00	ND	1.47	ND	2.79	0.732	0.03	30.3	ND 2	1.9 14.8				
		0/12/2015	2.04.00 FW	20000	0.159	1.21	101	0.0200	ND	41.9	ND	0.0470	2.01	140	ND 0.272	0.97	2.16	ND	1.40	ND	2.14	0.720	ND	21.3 42 E		0/ 10.0				
		0/15/2015	10.01.00 AVVI	44200	0.100	1.20	70.0	0.0299	ND	40.3 E2.4	ND	0.122	2.00	140 ND	0.575	0.40	3.10	ND	2.65	2.14	2.01	0.000	ND	42.0	0.0205 4	2.1 21.9 11 ND				
		8/15/2015	12:04:00 PM	44300	0.421	1.7	65.0	0.0302 ND	ND	52.9	ND	0.155	1.25	ND	ND	7.01	ND	ND	2.05	5.14 ND	2.61	0.609	ND	25.0	ND 2	E1 ND				
		8/16/2015	9:15:00 AM	9500	1 1 2	0.88	170	0.041	ND	53.0	ND	0.032	2.01	ND	ND	8.18	ND	ND	1.72	ND	2.01	0.000	0.19	25.5	ND 1	92 12 6				
		8/18/2015	9:56:00 AM	364.0	0.689	1 31	148	ND	ND	57.5	ND	0.0869	2.01	ND	0.287	9.82	ND	ND	1.74	ND	2.04	0.585	0.04	33.4	ND 1	88 12.3				
		8/19/2015	9:30:00 AM	4070	0.682	1.34	106	ND	ND	57.1	ND	0.0697	17	ND	ND	9.92	ND	ND	1.77	ND	2.54	0.538	0.04	34.1	ND 1	91 8 44				
4954000	San Juan R @ US160 Xing in CO	8/20/2015	9:44:00 AM	3650	0.764	1.32	132	ND	ND	57	ND	0.0772	1.85	ND	ND	9.55	ND	ND	176	ND	2.01	0.631	0.1	33.8	0.0365 1	93 8 1				
		8/24/2015	3:10:00 PM	1760	0.273	1.36	62.4	ND	ND	50	ND	0.048	2.18	ND	ND	8.95	1.92	ND	1.56	1.08	2.64	0.538	ND	32.6	ND 2	31 5.49				
		8/25/2015	3:30:00 PM	1500	0.481	1.42	63.4	ND	ND	47.8	ND	ND	2 11	ND	ND	8.74	1.88	ND	1.58	ND	2.52	0.579	ND	31.8	ND 2	52 ND				
		8/26/2015	2:50:00 PM	1540	0.563	1.47	70.5	0.0621	ND	47.5	ND	0.308	2.75	554	0.459	8.82	21.8	ND	1.57	1.05	2.61	0.622	0.07	32.2	0.0304 3	.29 8				
		8/27/2015	3:40:00 PM	117000	0.335	1.01	121	0.0635	ND	65.9	ND	0.383	3.3	605	0.527	10.2	11.4	ND	3.32	2.04	4.58	0.943	ND	49.2	ND 3	.41 6.22				
		8/28/2015	4:25:00 PM	196000	0.249	5.55	340	1.58	0.261	59.4	12	9.01	27.7	16700	15.7	10	413	0.04	1.45	12.7	7.89	0.821	0.09	89.6	0.18 2	6.2 72.8				
		9/23/2015	6:30:00 PM	5120	0.724	0.985	81.5	0.105	ND	60.8	ND	0.253	1.88	ND	ND	10.9	9.31	ND	1.82	1.31	2.87	0.666	0.13	35	0.115 1	.84 ND				
		10/2/2015		183000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/15/2015	12:00:00 PM	34400	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/18/2015		39000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/19/2015	12:00:01 AM	23900	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/19/2015	12:00:00 PM	166000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/20/2015	12:01:00 AM	202000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/20/2015	12:00:00 PM	248000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/21/2015	12:00:01 AM	230000	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS				
		10/22/2015	12:00:00 PM	94800	NS	NS	NS	NS NC	NS NC	NS	NS	NS NO	NS	NS NC	NS	NS	NS	NS	NS	NS	NS NO	NS	NS	NS	NS	NS NS				
		10/23/2015	12:00:10 AM	190000	NO NO	NO NO	NC	NO NO	NO NO	NS NO	NO NO	INS NO	INS NO	NS NC	INS NC	INS NC	NO NC	NO	NS NC	INS NC	NO NO	NO NO	INS NO	NO	NO	NO NO				
CI/OS	Son, kien P. @McElmo Weeh	0/22/2015	10:40:00 AM	109000	0.400	NS 1.4	60 C	ND	ND	105	NO	0.105	1.14	NO	NO	72.0	2.44	0.00	115	2.04	140	0.624	0.03	NO A		42 10				
GNUO	San Suarrie @ Micelinio Wash	8/25/2015	10.40.00 AM	3350	0.402		0.00	UND.	ND	105	ND	0.165		ND	NU	13.0	Z.44	0.02	2.59	2.01	4.49	0.051	0.03	00.4	ND 1	.43 NU				

San Juan River – Storm Influence

San Juan River Aquatic Life Impairments

Exceedances:

- Aluminum
- Cadmium
- Copper
- Iron
- Lead
- Mercury

Bonita Peak Mining District

Figure 12.—Photograph taken on September 15, 2015, of drainage from the Silver Ledge Mine, which is located south of the Gold King Mine.

Figure 11.—Photograph showing acid drainage flowing out of the Red and Bonita Mine on September 3, 2015.

- about 100 gpm of acid water flowing out.
- Proposed superfund site
- 48 historic minges near Silverton, CO
- Public comments accepted through June 6, 2016

sediments throughout the mining district and the Animas River. Based on historic information for 32 of the mine sites, there are an estimated 248,000 cubic yards of waste rock and a cumulative estimated adit flow of approximately 3,740 gallons per minute or 5.4 million gallons per day. Contaminants found in these sources and in the surface water include arsenic, cadmium, copper, manganese, zinc, lead and aluminum. These contaminants impact fisheries that are harvested for human consumption, as well as wetlands and habitat for the threatened Canadian Lynx.

Cumulative Releases Over a Decade

Estimated Historic Mine Releases (gallons per month)

Utah's Long-term Plan Study Objectives

- Determine if metals pose a risk to the San Juan River or Lake Powell
- Provide timely information upon which to evaluate risk
- Understand trends in metal loading to Lake Powell
- Determine the relative importance of Bonita Peak Mining District sources

Spring Runoff Monitoring

- Majority of 400,000 kg of heavy metals released remains in the Animas River
- Like to be mobilized during high flows (spring runoff)
- Animas River spring runoff flows are 10x higher than storm flows in Fall 2015
- EPA monitoring data collected during monsoonal storm events show elevated concentrations of metals that exceed Utah water quality criteria

Real-time Water Quality Information

Drinking water systems

Public Systems

- Mexican Hat, Bluff, Sand Island
- Sample public drinking water systems for metals during peak spring runoff
- Sampling at wells prior to treatment and finished water
- Division of Drinking Water (UDEQ) will coordinate with facilities

Private Systems

- Up to 7 private wells sampled with preference to wells that are influenced by river
- Division of Drinking Water (UDEQ) will coordinate with San Juan County

Long-term effects on Lake Powell

San Juan Arm, Lake Powell

 Depositional area for historic and current mine releases in San Juan system

Historic releases:

- Estimated release of 8.6 million tons of tailings discharged to river system over life of the mines
- EPA estimates 5.5 million gallons per day of releases
- □ 1974 116,000 tons
- 1978 500 million gallon release

Sediment transport

Sediment monitoring in San Juan River (UDEQ) and Lake Powell (USGS)

Lead in Sediment

- □ Health based concentration: 400 mg/kg
- □ Aquatic Life screening value: 37 mg/kg

Lake Powell - San River Arm Core 3

From USGS 2014 - 1096

Ecological and Human Health Risk Assessment

Assess the potential for adverse effects to invertebrates, fish, birds and mammals from exposure via food items using pollutant concentrations measured in invertebrates and water.

Assess the potential human health risk presented by use of the San Juan River for culinary water, recreation, or agricultural activities using water and sediment data.

Long-term Work Plan Elements

Water Quality Monitoring to Inform Public and Protect Uses of San Juan River

	Task 1: Surface Water Quality Monitoring
•	Task 2: Real-time Reporting of Water Quality Conditions
Drinking	Water Quality Monitoring
•	Task 3: Public Drinking Water Systems Monitoring
•	Task 4: Private Well Monitoring
Metals L	oad Analysis and Source Characterization
	Task 5: Total Metals Load Analysis
	Task 6: Inventory of Sources in the San Juan River Watershed
Accumu	lation of Metals in San Juan River and Lake Powell
•	Task 7: Sediment sampling in San Juan River and Tributaries
	Task 8: Sediment Traps in Lake Powell
•	Task 9: Sediment Core Study in Lake Powell
Assessing	g Impacts on Human Health and Aquatic Life Uses
	Task 10: Ecological Risk Assessment
•	Task 11: Human Health Risk Assessment
Coordi	nation and Outreach

- Task 12: Inter-agency Partnership and Collaboration
- Task 13: Public Information and Stakeholder Outreach

Long-term Monitoring Plan Total Costs	\$1.2 million
EPA Funding for Utah Long- term Plan	\$465,000
EPA Funding for Utah's Spring Runoff activities	~\$180,000
UDEQ lab allocation and staff contributions	\$250,000
Match from other agencies	\$120,000 (tentative)
Water Quality Board interim funding	\$200,000 (prefer to return)
Defer long-term work elements	TBD

More Information deq.utah.gov/Topics/Water/goldkingmine/

Help me find ...

|DEQ.Home | A-Z Index | Calendar | Contacts | Divisions | EZ Records Search | Interactive Map | Payment Portal | Search DEQ | Site Map |

DEQ Main Menu

Certification/Training

Compliance/Monitoring

Fees/Grants/Funds

Laws/Rules

News/Notices

Programs/Services

Locations

Permits

Topics

Workgroups

Pollutants

Boards Businesses DEQ Home > Gold King Mine

Gold King Mine Release

| Data and Analysis | Photo Gallery | Sampling Sites Map | Long Term Monitoring Plan |

|Updates| Press Releases |Background | Animas, San Juan Spring Runoff Preparedness Plan |

Updates

Update April 12, 2016

DEQ continues to collect weekly water quality samples in the San Juan River. Thus far, none of the samples collected during spring runoff show exceedances of any screening values for recreational uses, aquatic life, agricultural uses, or drinking water. DEQ will notify the public on this website should any samples exceed any screening values. Otherwise, DEQ will be posting raw and summary data bi-weekly beginning in mid-April.

Update March 21, 2016

DEQ has drafted a Long Term Monitoring and Assessment Plan for the San Juan River and Lake Powell in response to the August 5, 2015 Gold King Mine Spill that occurred in the upper watershed. The Plan consists of 13 tasks that are designed to assess the potential risks to human health, recreation, aquatic life and agriculture.

Update March 4, 2016

The Water Quality Board authorized \$200,000 of hardship grant funds to monitor the San Juan River during spring runoff event. There are concerns of a second wave of metal pollution originating from the Gold King Mine release that could be remobilized when the spring melt increases stream flows. The Division of Water Quality is developing a long-term monitoring plan to include:

- monitoring during high flow events;
- · placement of instrumentation to provide for continuous monitoring of turbidity; and
- evaluation of the legacy effects of metals released from mines in the San Juan River watershed on Utah's waters, including Lake Powell sediments.

Update February 10, 2016

DEO continues to avaluate the effects of the Austral Eth release from the Cold Vine Mine on Utek's waters. As avaled data indicate