Mining and Mineral Resources

Introduction

Mineral resources provide the raw materials required to manufacture many of the products that make modern society possible. Minerals are the source of materials used to construct buildings, build roads, make cars, generate electricity, develop technology, and provide countless consumer goods. Mineral resources require varying levels of processing and refining that are often dictated by end use. As society changes and advances, additional mineral resources will be required to fuel those changes. For instance, a transition to renewable energy will require substantial additional production of copper, lithium, cobalt, rare earth elements (REE), critical minerals, and other resources.

The abundant mineral resources in Utah have proven to be a great benefit to the people here and to the entire United States for over 170 years. The production of salt from Great Salt Lake and lime products were some of the first commercial operations begun after Mormon settlers arrived in the Salt Lake Valley in 1847. Most of the buildings constructed after 1872 at Fort Douglas were constructed of sandstone from nearby Red Butte Canyon, and many other homes and buildings throughout the state were constructed of various types of stone from other quarries.¹ Commercial-scale production of metals, consisting primarily of gold and silver, began in 1865. Copper and lead production reached commercial levels in 1870 and together with the precious metals reached a total value of over a million dollars that year.² The late 1800s also saw the development of Utah’s famous Bingham mining district. After the transcontinental railroad was completed in 1869, a number of branch lines were constructed and each one contributed to an increase in metal production that pushed total extractive industry values to over $100 million by 1917.³ Simultaneously, a number of large smelters were constructed in the Salt Lake Valley, mostly just after the turn of the century. These new facilities helped establish Utah as a major regional mining and smelting center by the early 1900s. Since that time, Utah’s mining industry has continued to expand and is an important producer of numerous mineral resources.

Currently, mining in Utah occurs on a complex configuration of federal, state, and privately owned lands. As a result, regulation and development of Utah’s mineral resources are managed by various state and federal agencies including: the Utah Division of Oil, Gas and Mining (DOGM), the U.S. Bureau of Land Management, the U.S. Forest Service, the Utah Department of Environmental Quality, the Utah School and Institutional Trust Lands Administration (SITLA), and the Utah Division of Forestry, Fire and State Lands.

Mining in Utah is primarily regulated by DOGM and their mission is to regulate the exploration and development of coal and non-coal minerals in a manner which:

- encourages responsible reclamation and development;
- protects correlative rights;
- prevents waste; and

¹ Powell (1994), Utah History Encyclopedia: Salt Lake City, University of Utah Press, 674 p.
² Butler and others (1920) (https://doi.org/10.3133/pp111)
³ Stowe (1975) (https://doi.org/10.34191/b-106)
protects human health and safety, the environment, and the interests of the state and its citizens.\(^4\)

In 1975, the Utah Legislature assigned DOGM the responsibility for administration of the Mined Land Reclamation Act. The act’s primary function was to “prevent conditions detrimental to the general safety and welfare of the citizens of the state of Utah” that could occur from activities of the mining industry in the state. Permitting and inspection/enforcement procedures, initiated by the act, ensure proper mine operation and the reclamation of affected lands. The act also made it illegal for mines to be abandoned without reclamation.

Implementation of the Mined Land Reclamation Act was initially funded totally with state general funds. A specific law to address the reclamation of coal mines, the Utah Coal Mining and Reclamation Act, was passed in 1979, and in 1981 Utah received primacy for regulation of coal mining and reclamation under the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA). In March 1987, DOGM assumed sole responsibility under a cooperative agreement for permitting, inspection, and enforcement on federal lands. Federal money is provided for regulation of coal mining and reclamation on federal and nonfederal lands. Funds for the regulation of non-coal minerals exploration and development continue to come primarily from Utah’s general fund but are supplemented by a modest permit fee program implemented in 1998.

DOGM’s Abandoned Mine Reclamation Program (AMRP) conducts reclamation of abandoned mine sites under Title IV of SMCRA. Funds for this program come from appropriations of federal fees paid by the coal industry, based on a per-ton produced rate. Modest funding agreements with private and federal partners also supplement some of the work in the Abandoned Mine Reclamation Program. The AMRP works to protect the public from dangers of old mines by sealing off access to openings and cleaning up waste. Old mining sites can be intriguing to the public but can be unstable, contain dangerous gases, and present other hazards. Today there are an estimated 17,000 mine openings scattered across Utah.\(^5\)

The Minerals Program within DOGM regulates all non-coal mining operations in the state with a few exceptions. The mission of the Minerals Regulatory Program is to regulate exploration for, and development and reclamation of, non-coal mineral resources of the state in conformance with the Utah Mined Land Reclamation Act, UCA 40-8 in a manner which:

- supports the existence of a viable minerals mining industry to preserve the economic and physical well-being of the state and the nation
- safeguards the environment while protecting public health and safety, and
- achieves the successful reclamation of lands affected by mineral mining activities.\(^6\)

From Rio Tinto’s Bingham Canyon mine, the largest open-pit mine in the state, to small operations mining for trilobite fossils, the Minerals Program staff works to ensure mining operation procedures are followed. This includes verifying operators work within their permit boundaries, ensuring that mining operations pose no threat to public safety or the environment, and holding appropriate reclamation fees or bonds in the event that they are needed.

\(^4\) https://www.ogm.utah.gov/about.php#mission

\(^6\) https://minerals.ogm.utah.gov/about.php#mission
The Utah Geological Survey’s (UGS) mission is to provide “timely scientific information about Utah’s geologic environment, resources, and hazards” and it acts as the primary repository for mineral resource information across the state. The UGS generates, collects, compiles, and distributes mineral resource data and information to public, private, and government users. In those roles, the UGS conducts original research on Utah’s mineral resources but also preserves existing data made available from other sources, such as industry. In 2020, the UGS produced Circular 129, “Critical Minerals of Utah.” Much of the data in this section is derived from this report (include reference in footnote).

Findings

Utah hosts a variety of mineral resources and produces significant quantities of base metals, precious metals, and industrial minerals. The U.S. Geological Survey ranked Utah 8th in the nation for nonfuel (metals and industrial minerals) mineral production value in 2020, accounting for nearly 4% of the U.S. total. Utah consistently ranks in the top 10 states for production value of nonfuel minerals.

The Utah Geological Survey estimates that the production value of Utah’s mines, excluding coal, in 2020 was $3.2 billion. Base metal production contributed $1.5 billion to that total and includes copper, magnesium, beryllium, and molybdenum. Notably, copper accounted for 57% of Utah’s base metal production value in 2020. Precious metals produced in Utah include gold and silver, and 2020 production was valued at $350 million. Utah also produced several industrial mineral commodities including sand and gravel, crushed stone, salt, potash, cement, lime, phosphate, lithium, gilsonite, clay, gypsum, and others. The estimated value of industrial mineral production in 2020 was $1.4 billion.

Notably, Utah is home to the Bingham Canyon mine, which is a world-class copper-molybdenum-gold porphyry deposit. The great majority of Utah’s copper, gold, and silver production and all molybdenum production comes from the Bingham Canyon mine. The mine and associated refineries and facilities are located on the west bench of the Salt Lake Valley in the Oquirrh Mountains. Utah also remains the only state to produce magnesium metal, beryllium concentrate, potassium sulfate, and gilsonite; of these mineral commodities, magnesium, beryllium, and potash (includes potassium sulfate) are included in the U.S. Department of the Interior’s 2018 list of critical minerals. Lithium, also deemed a critical mineral, was produced in Utah for the first time in 2020, making Utah one of only two lithium-producing states.

Currently there are more than 400 non-coal mines with active permits from DOGM statewide. The metals and industrial minerals sections below detail the most significant mineral resources mined in Utah.

Metals

7 This section was contributed by the Utah Geological Survey Energy and Minerals Program. Information and data from this section are primarily derived from the Utah Geological Survey’s annual mining reports. A representative example can be found at the following link (https://doi.org/10.34191/c-130).

10 OGM records as of 8/19/2021.
Copper. Copper is the largest single commodity contributor to Utah’s nonfuel mineral portfolio. The Bingham Canyon mine is, by far, the primary producer of copper in Utah, and produced 309 million lbs (154,000 short tons) in 2020 valued at $864 million. Smaller producers have intermittently operated in San Juan and Beaver Counties in recent years. Utah copper is used to create various alloys for numerous products including electrical wiring, electronic components, and pipe for plumbing, refrigeration, and heating systems.

Magnesium. Utah is home to the U.S. Magnesium plant in Tooele County, which is the only facility producing magnesium metal from a primary source within the United States. Magnesium chloride-rich brine is derived from the Great Salt Lake and through evaporation is converted to magnesium metal by an electrolytic process. The plant has a production capacity of approximately 70,000 tons of magnesium metal per year. This metal is used as a constituent of aluminum-based alloys for aerospace and defense applications, to add strength, decrease weight and increase corrosion resistance of alloys for desulfurization of iron and steel, and for other practical industrial applications. Other potential magnesium resources are located in the Great Salt Lake Desert/Bonneville Salt Flats, Sevier Lake, and the Paradox Basin.

Beryllium. Utah currently remains the sole producer of beryllium ore in the United States. Materion Natural Resources, Inc., extracts bertrandite, a beryllium mineral, from the Spor Mountain area in Juab County, and then produces bertrandite concentrate at their mill in Millard County. The beryllium mill processes the bertrandite ore into beryllium hydroxide, which is then shipped out of state for further refining. In 2020, beryllium production from Utah totaled 333,840 lbs (167 tons), having a value of $94 million. The Spor Mountain mine is the largest producer of beryllium in the world, accounting for approximately 63% of the world’s production in 2020. The proven and probable reserves at Spor Mountain are estimated to be enough to maintain mining at current production levels for another 75 years. Beryllium is an essential component in aerospace and defense applications due to being lightweight but able to withstand significant temperature variations and mechanical distortion. It is also an important component for automotive and consumer electronics, telecommunications infrastructure and energy applications.

Gold and Silver. Most of Utah’s gold and silver are produced from the Bingham Canyon mine. However, lesser amounts of both metals are currently also produced at the Kiewit (Tooele County) and Trixie (Juab County) mines. Utah produced 175,043 troy ounces of gold in 2020 valued at $310 million. Utah produced 2.2 million troy ounces of silver in 2020 valued at $44 million.

Molybdenum. Molybdenum is produced in Utah exclusively from the Bingham Canyon mine. Bingham produced 45,000,000 lbs (22,490 tons) of molybdenum in 2020 valued at $408 million. Molybdenite, the ore mineral of molybdenum, is not refined at Bingham Canyon. The molybdenite is concentrated, dried, and shipped to other refineries in Arizona and Mexico. Molybdenum is primarily used in alloys, particularly stainless steel alloys widely used in the petroleum industry.

Iron. Utah intermittently produces iron from the Iron Springs district in Iron County and recently resumed production following a shutdown in 2014. The Iron Springs district has historically been the largest iron producer in the western U.S. Iron mineralization at the Black Iron open-pit mine, which restarted operations in 2020, occurs as massive magnetite skarn/replacement deposits adjacent to Miocene monzonite laccoliths.
Industrial Minerals

Potash. Utah is one of only two potash-producing states in the country, and three locations in Utah produce potash. Compass Minerals in Ogden produces potassium sulfate from Great Salt Lake brine. Intrepid Potash-Wendover produces potassium chloride from shallow subsurface brines in the Great Salt Lake Desert, and Intrepid Potash-Moab produces potassium chloride from a solution mine targeting deep, subsurface evaporites of the Pennsylvanian-age Paradox Formation. Potash production in Utah totaled 461,000 short tons in 2020 having a value of $227 million. Uniquely, Utah produces two types of potash: potassium sulfate and potassium chloride. Potassium sulfate has a significantly higher (+$376 per ton in 2020) market value than potassium chloride. As previously noted, Utah is the sole domestic producer of potassium sulfate. The primary use of both types of potash is fertilizer; however, potash is also used in the production of soap, glass, ceramics and batteries and is a component in drilling mud used in the oil and gas industry.

Sand and Gravel, Crushed Stone, and Dimension Stone. Sand and gravel, crushed stone, and dimension stone are produced by many private, county, state, and federal entities across the state. These commodities are produced from several types of unconsolidated deposits. Sand and gravel and crushed stone, known generically as construction aggregate, are widely used for concrete aggregate, road construction, asphalt aggregate, fill, and for other construction uses. During 2020, approximately 40 million short tons of sand and gravel was produced in Utah, worth an estimated $309 million, and about 14 million short tons of crushed stone was produced, worth $105 million.11 Several thousand tons of dimension stone were also produced. A strong construction market in Utah, particularly in the residential sector, has kept construction aggregate demand relatively high for the past several years.

Salt. Utah has extensive salt resources in a variety of areas. Salt produced in Utah is used for a variety of purposes including road deicing, water treatment, and agricultural and industrial applications. One operation in central Utah, Redmond Minerals, also produces food-grade salt from their underground operation. Utah salt production in 2020 amounted to approximately 3.3 million short tons and had a production value estimated at $207 million. About 76% of the salt was produced from Great Salt Lake brine by three operators that use evaporation ponds for production: Compass Minerals Ogden, Cargill Salt, and Morton International. The remaining 24% came from Redmond Minerals, Intrepid Potash-Moab, Intrepid Potash-Wendover, and Willow Creek Salt. Redmond Minerals and Willow Creek Salt use conventional methods to mine rock salt and Intrepid uses evaporation ponds to produce salt. Intrepid Potash-Wendover primarily extracts salt from shallow subsurface brines and Intrepid Potash-Moab solution mines salt from deep subsurface salt beds.

Portland Cement, Lime, and Limestone. Multiple mining operations in Utah mine limestone for purposes beyond construction aggregate to create value-added products such as Portland cement and lime. Ash Grove Cement and LafargeHolcim produced about 1.8 million short tons of Portland cement in Utah during 2020, having an estimated value of $207 million. Ash Grove Cement operates the Leamington quarry and plant east of Leamington in Juab County, whereas LafargeHolcim operates the Devils Slide quarry and plant east of Morgan in Morgan County.

Besides mining limestone for Portland cement, Ash Grove and Holcim also produce small amounts of sandstone, clay, and shale, which are lesser feedstock for their cement plants. During 2020, Graymont Western U.S. was the sole producer of lime in Utah, and they produced high-calcium quicklime and dolomitic quicklime from their quarry and plant in the Cricket Mountains in Millard County. Lime is used for flue gas desulfurization, steel production, and a variety of other construction, chemical, and industrial applications. Limestone is also mined for flue-gas desulfurization at coal-fired power plants and “rock dust,” used to coat the walls of coal mines to keep coal dust from accumulating.

Phosphate. Utah is one of four states in the country that produces phosphate rock. Most of the phosphate rock mined domestically is used to manufacture phosphoric acids to make ammonium phosphate fertilizers and animal feed supplements. Simplot Phosphates is the major phosphate producer in Utah, mining the Meade Peak Member of the Permian Phosphoria Formation. Their phosphate operation is 12 miles north of Vernal in Uintah County. In 2020, the mine produced nearly 3.2 million short tons of ore, yielding about 1.2 million short tons of phosphate concentrate after processing. The concentrate is transported in slurry through a 96-mile underground pipeline to the Simplot fertilizer plant near Rock Springs, Wyoming. A few thousand tons of organically certified phosphate is produced from another mine in Utah County.

Gilsonite. Gilsonite is a shiny, black, solid hydrocarbon that occurs in a swarm of narrow, but laterally and vertically extensive veins in the Uinta Basin. It has been mined since the late 1880s, mostly in Utah with some minor production in the Colorado part of the basin. In 2020, American Gilsonite Company and Table Rock Minerals, LLC were the only producers of Gilsonite, both located in Uintah County. Over the past decade, gilsonite production from the Uinta Basin has ranged up to about 85,000 short tons per year, depending on market conditions. Utah is the only place in the world that contains large deposits of gilsonite, which has been shipped worldwide for use in numerous and diverse products including asphalt paving mixes, coatings, inks, and paints. The oil and gas industry has also used gilsonite as an additive in drilling fluids. Gilsonite helps control fluid loss and seepage, increases wellbore stability, prevents loss of circulation, and stabilizes shale.

Clay and Shale. Clay and shale production (including bentonite, common clay, high-alumina clay, and expanded shale) in Utah totaled at least 341,000 short tons in 2020. Clay and shale are produced at various small and large mines, commonly on an intermittent basis. Bentonite was produced by Western Clay and Redmond Minerals. Uses for bentonite include well drilling and foundry operations, various civil engineering applications, and litter-box filler. Some of the largest producers of clay and shale products are Utelite (expanded shale), Interstate Brick (common clay), Ash Grove Cement (high-alumina clay), and LafargeHolcim (high-alumina clay). Common clay is largely used to make bricks, whereas high-alumina clay is most commonly used to make Portland cement in Utah. Applied Minerals Inc. intermittently produces a small amount of specialty clay (halloysite) and iron oxide from the Dragon mine in the Tintic Mountains. Expanded shale in Utah is produced by Utelite at their quarry and plant near Wanship in Summit County. Expanded shale is a lightweight aggregate mainly used by the construction industry. The material is used in roof tile, concrete block, structural concrete, and horticulture additives, as well as for highway construction and geotechnical fill.

Silica and industrial sand. Silica and industrial sand produced in Utah are used for flux and frac sand. Production in Utah during 2020 had an estimated value of about $19 million. On Stansbury Island, Bolinder Resources mines quartzite from the Devonian-Mississippian

Stansbury Formation as a source of industrial silica that is being used as a flux at the Kennecott smelter. North of Vernal, Ramsey Hill Exploration produces frac sand from Quaternary unconsolidated mixed alluvial and eolian deposits. Frac sand is relatively pure silica sand that is used for hydraulic fracturing stimulations in oil and gas wells and Ramsey Hill is supplying this sand for local use in the Uinta Basin.

Gypsum. Utah has significant gypsum resources and gypsum produced in Utah is primarily used in raw or crude form by regional cement companies as an additive to retard the setting time of cement and by the agriculture industry as a soil conditioner. Lesser amounts of the higher value calcined gypsum are used to make wallboards. Four operators reported combined gypsum production in Utah of about 553,000 short tons in 2020. The estimated value of 2020 gypsum production is $6.6 million. The four Utah gypsum producers were Progressive Contracting, Inc., United States Gypsum Co., Sunroc Corp., and Diamond K Gypsum. Two gypsum wallboard plants are located near Sigurd in Sevier County, but only one is currently active.

Lithium. For the first time in 2020, lithium was produced in Utah by U.S. Magnesium as a byproduct. Lithium is concentrated along with magnesium in U.S. Magnesium’s solar evaporation ponds and as part of the magnesium refining process, lithium is separated from magnesium. U.S. Magnesium has been stockpiling lithium ore from this process for many years. Their estimated capacity for lithium production is about 10,000 tons of lithium carbonate per year. Lithium is primarily used in batteries, but is also used in ceramics, glass, lubricating grease, pharmaceuticals, and other applications. Other potential lithium producing areas in Utah include the Paradox Basin, Sevier Lake, and the Great Salt Lake Desert.

Coal

(See Energy Resources Section)

Exploration and Development

Exploration and development activity for mineral resources in Utah remains a steady presence. Exploration and development involves locating a potential mineral deposit, acquiring a land position, defining the potential mineral resources (which includes mapping, sampling, drilling, etc.), economic evaluation, permitting, and other activities. Utah has a long history of exploration for metallic resources and exploration is currently taking place in many of Utah’s mining districts for copper, gold, silver, lead, and zinc. Recent exploration for industrial mineral commodities includes fluor spar, lithium, frac sand, potash, pozzolan, phosphate, and others.

Critical Minerals and Rare Earth Elements

Critical Minerals. In 2018, the U.S. Geological Survey designated 35 non-fuel minerals or mineral groups as critical minerals. Critical minerals are defined as those necessary for economic or national security and have a supply chain vulnerable to disruption. In 2020, Utah produced eight critical minerals (helium, lithium, beryllium, magnesium metal, potash, rhenium, platinum, and palladium). Rhenium, platinum, and palladium are all produced as byproducts

from the Bingham Canyon mine. Helium is produced at a gas plant in Lisbon Valley that purifies helium from natural gas streams, some of which are from Utah, starting in 2019. The production of lithium, beryllium, magnesium metal, and potash is discussed above.

In addition to the eight produced critical minerals, Utah hosts established resources of six more (fluorspar, vanadium, uranium, aluminum, and indium). Ares Strategic Mining is currently developing the Lost Sheep fluorspar mine in Juab County, with plans to begin production in 2021. In May 2021, Rio Tinto also announced it would build a tellurium recovery plant expected to come online in late 2021 at Bingham Canyon. The addition of Lost Sheep fluorspar and Bingham Canyon tellurium brings Utah's anticipated 2021 critical mineral production to ten commodities. If the Lost Sheep comes online it will be the major fluorspar producer in the United States. Other recent activities in Utah related to critical minerals have included exploration for vanadium, indium, helium, lithium, and potash. However, the U.S. Geological Survey recently announced that uranium was not evaluated for inclusion on a proposed update to the critical minerals list. The U.S. Geological Survey report also indicated that the future status of helium, potash, and rhenium as critical minerals is uncertain. Zinc has been recommended as an addition to the critical mineral list and Utah has historically been the ninth largest zinc producer domestically.

Rare Earth Elements (REE). Utah’s geology is not conducive to the formation of significant REE deposits, as confirmed by historical exploration. Minor modern exploration has re-evaluated previously deprioritized targets (e.g., Lake Bonneville beach gravels in Juab County); however, it is unlikely that Utah has the potential to become a primary REE producer. Byproduct REE production from existing mine tailings, such as the beryllium tailings at Spor Mountain or coal ash stockpiled at coal-fired power plants, may be possible and is the subject of current research.

Products from the mining industry are integral to every Utahns’ lifestyle and standard of living and mining supports the foundation of the nation’s economy. From the sand and gravel used to build roads and lay foundations for homes and buildings, to coal and uranium (fuel minerals addressed in the Energy section) used to generate more than half of the nation’s electricity, to the copper wire that connects billions of computers to a global social and commercial network, this country’s economy and way of life depend on the vital resources provided by mining. Because of its importance to society, mineral resource development in Utah is supported by state policy.

ECONOMIC CONSIDERATIONS

The mining industry is an important contributor to Utah’s economy. As previously noted, Utah ranked 8th in the U.S. for value of nonfuel (metals and industrial minerals) mineral production in 2020, and the total value of those commodities produced in 2020 was approximately $3.2 billion. The metal and industrial mineral industries paid nearly $66 million in property taxes during 2020 and over $13 million (in fiscal year 2020) in mining-related severance taxes. All extractive industries, including oil and gas, paid nearly $45 million in federal Mineral Lease disbursements in FY2020. About 1% of Utah's gross domestic product came from the mining industry in 2019, 1.4% if oil and gas are included. According to the Utah Department of

16 Nassar and Fortier (2021) (https://doi.org/10.3133/ofr20211045).
17 Mills and others (2020) (https://doi.org/10.34191/c-130).
Workforce Services, about $390 million in wages were earned in 2020 by mining employees in Utah.

Goals, Objectives and Policies

Utah will continue to regulate the exploration and development of minerals in a manner that encourages responsible reclamation and development; prevents waste; and protects human health and safety, the environment, and the interests of the state and its citizens. The State will advance Utah’s mineral development sectors through planning, policy, and engagement with the mining industries, the public, and interest stakeholders.

Products from the mining industry are integral to every Utahns’ lifestyle and standard of living and support the foundation of the nation’s economy. From the sand and gravel used to build roads and lay foundations for homes and buildings, to coal and uranium used to generate more than half of the nation’s electricity, to the copper wire that connects billions of computers to a global social and commercial network, this country’s economy and way of life depend on the vital resources provided by mining. Because of its importance to society, mineral resource development in Utah is supported by state policy. The following statements describe the state’s positions on mineral resources and mineral development on state and federal lands within the State of Utah.

Goals, Objectives, and Policies

Goal

Promote responsible and sustainable stewardship and development of Utah’s mineral resources.

Objectives

- Protect and expand access to significant mineral resources, including critical minerals and rare earth elements, for current and future generations of Americans.
- Encourage the mining, transportation, and processing of mineral resources in Utah, including critical minerals and rare earth elements.
- Support the investigation and processing of mine tailings and new mineral resources to extract critical minerals and rare earth elements while avoiding undue environmental harm.
- Help ensure that the Utah Geological Survey has adequate funding to investigate and make needed data publicly available. This process may include the need to hire additional employees to do research, collect and synthesize data, and generate reports.

Policies

- The State encourages the exploration and production of critical minerals and rare earth elements.
- The State will oppose land use plans or designations that impede access to important mineral resources to include the ability to mine, produce, process, or transport those resources.
- The State will oppose any land use restrictions or designations that could impede mineral resource development and production prior to the federal government funding
and completing a comprehensive mineral resource assessment of the area subject to such restriction or designation.

- The State supports federal initiatives to reduce the nation’s reliance on imported mineral resources.
- The State supports streamlining and expediting the NEPA compliance, policies, and permitting processes so that mineral resources can be accessed, produced, processed, and transported in a timely manner.
- The State supports legislation and policies that facilitate exploration and development of the mineral resources in Utah.
- The State supports responsible and environmentally conscious mining for mineral resources on lands managed by the State, U.S. Bureau of Land Management and the U.S. Forest Service.
- The State does not support the withdrawal of lands managed by the U.S. Bureau of Land Management or the U.S. Forest Service from available mineral extraction unless the proposed mineral withdrawal is agreed upon through coordination with the state and counties within which the proposed mineral withdrawal is located.
- The State will engage with federal land management agencies on all mining-related projects to promote the responsible mining of mineral resources.
- The State supports a positive working relationship between the federal land management agencies and the Utah Division of Oil, Gas, and Mining to promote responsible mining of the mineral resources that support Utah’s economy and quality of life while safeguarding Utah’s environment.
- State agency personnel shall be included as members of interdisciplinary teams preparing NEPA documents affecting mineral resources in Utah.