November 15, 2023 Natural Resources, Agriculture, and Environment Interim Committee

Great Salt Lake Integrated Water Assessment Update

Candice Hasenyager Division of Water Resources

The Challenge

- Ensuring a resilient water supply requires extraordinary vision and collaborative effort. Solutions remain socially and technically complex as demands on this limited resource continue to increase.
- Today's water management decisions shape tomorrow's possibilities.

Work Plan Development

Integrating Efforts

HB 429 Great Salt Lake Watershed Integrated Water Assessment (\$5M, Finish by Nov 2026)

U.S. Bureau of Reclamation WaterSmart Basin Study (\$3.1M Match) Great Salt Lake Basin Integrated Plan

"Provide a thorough trade-off analysis to help decision-makers balance water supply and demand, and avoid deterioration of agriculture, industry, and ecosystems"

"Identify and evaluate BMPs that may be used to provide a reliable water supply that:

- Meet water quality objectives
- Meet agricultural water objectives
- Accommodate anticipated growth and economic development
- Provide adequate flow to sustain GSL, GSL's wetlands, and other ecological functions in GSL's watershed" - HB 429

- Reclamation Basin Study

An Integrated Approach to Work Plan Development

Work Plan Development

Our Goal

Ensure a **resilient** water supply for Great Salt Lake and **all water uses**, including **people** and the **environment**, throughout the **watershed**.

An Integrated Approach

Learn more GSLBasinPlan.utah.gov | GSLBasinPlanning@utah.gov

WATER RESOURCES

A Collaborative Approach

UTAH

DNR

GSLBIP	2023	2024				2025				2026				2027				
runung	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
\$4,500 000		Makin	ig Decis	ions T	rack													
\$400,000	Quant	ify Eva	porative	Losse	s from	Great S	Salt Lak	ke										
\$200,000			Updat Estima Aquife Water	e Safe ates fo ers in G shed	Yield r SL													
\$200,000	Bioen	ergetic	s Study	- Wate	r Requi	rement	s of Gr	eat Sal	t Lake S	Shorebi	rds			<i>0</i> 5				
\$300,000		Analysis to Identify Minimum Functional Flows for Streams																
\$400,000		Deterr for Ag	mine the	e Oppo al Wate	rtunitie er Optin	es and (nizatio	Costs n							Lege Mak	end king Dec	isions		
\$400,000		Deterr of M&	mine the	e Oppo Conse	rtunitie rvaton	es and (Costs							Stra Solu	<mark>tegic Re</mark> utions D	esearch evelopm	ent	
\$300,000			Option Dust C	ns and Control	Costs f	for GSL								Сар	acity De	evelopm	ent	
\$200,000	Develop Great Salt Lake Data Hub with USGS																	
			All and a second s															

Work Plan Rollout

- Mid-November release
- November 15 presentation to legislature
- December 7 open house
- 45+ day review period
- BIP work begins January 2024

Impacts of Stormwater Management through Low Impact Development in GSL Watershed

Development usually produces <u>more</u> runoff and <u>less</u> evaporation by converting natural open spaces and vegetation to impervious surface, *regardless of stormwater management technique.*

Source: Utah Geological Survey

Source: U.S. National Park Service

Source: Utah Department of Environmental Quality Development without LID likely produces more flow to the Great Salt Lake than LID development.

However, direct stormwater runoff into streams and lakes can impair water quality and violate the Clean Water Act.

LimnoTech

LimnoTech

BASIN-WIDE SUMMARY

Description	Totals**
Developed Area (acres)	133,300 (120,000 – 146,600)
Impervious Surface (acres)	53,000 (37,200 - 71,100)
Additional Volume to GSL (With LID) (acre-ft)	24,900 (17,500 - 33,400)
Additional Volume to GSL (Without LID) (acre-ft)	56,100* (39,400 - 75,200)

*Non-LID scenario assumes no evaporative losses during alternative water quality treatment.

**Ranges shown assume future developed areas may vary by $\pm 10\%$ and the percent of developed area that is impervious may vary by ± 5 to 10%.

DEVELOPMENT Bonofite									
		DIAWDAUNS							
Increased	water to GSL	Impairs water quality							
WITHO	JT LID	WITH LID							
 Benefits More water to GSL than with LID Water reaches GSL faster (days) 	 Drawbacks Reduces GW recharge Requires alternative water quality treatments 	 Benefits Improved Water Quality Decreases regional detention Increases GW recharge 	 <u>Drawbacks</u> Water Reaches GSL Slower (years) Additional local infrastructure requirements Increased ET resulting in less water to GSL than without LID 						

THANK YOU

