Acknowledgments

My appreciation to the working group & Advisors

- Ben Hart, UIPA
- Ben Buys, UIPA
- Bryce Bird, DAQ
- Lisa Bird, DAQ
- Mat Carlile, DAQ
- Carlos Braceros, UDOT
- Leif Elder, UDOT

- Ashley Miller, Consultant, lobbyist
- Adrian Guerrero, UPRR Gov Affairs
- Dan Hemmert, UPRR Lobbyist
- AGC (Heavy Equipment Dealers/Contractors)
- Speaker Mike Shultz

Clean Air Background Data

- EPA has designated Non Attainment Areas in Utah (Wasatch Fron and the Uinta Basin) for National Ambient Air Quality Standards NAAQS.
- Reducing diesel emissions shows progress in nonattainment areas (reducing the risk to our transportation plans & funding)

Statewide Diesel Emissions

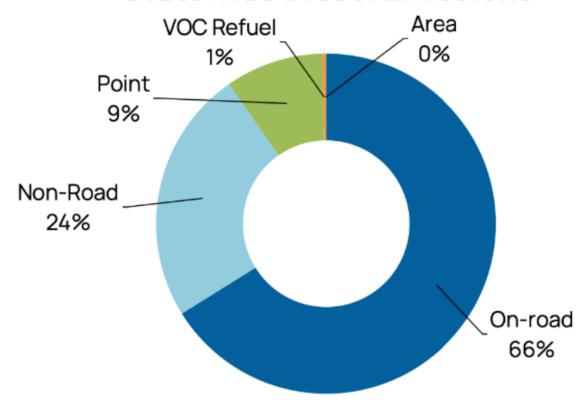


Figure 2: Utah Statewide Sources of Diesel Emissions of NO_x , VOCs, $PM_{2.5}$, SO_2 , and NH_3

Switcher Locomotives

Clean Air Act Exempts Railroad from Regulation

Union Pacific
32 switchers in the State
18 in SLC Roper Yard
7 are proven make/model for a "repower"

Chevron, Flying J, Marathon also have switchers (likely older units, heavy polluters, used infrequently)

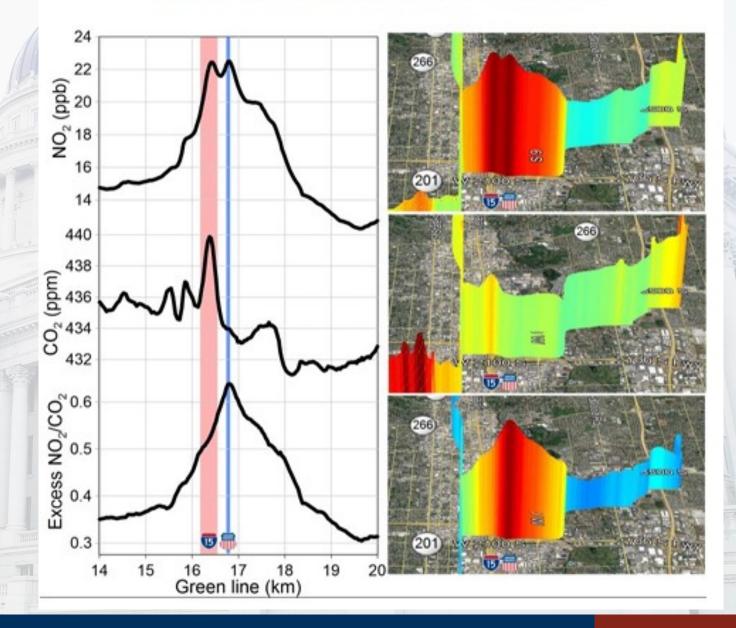
Short Lines:

Patriot Rail
11 switchers, older fleet

Utah Railways (<u>G& W</u>)
12 switchers,

Savage 2 switchers,

Plans for 6 in coming months


Background Data

Monitored NOx emissions

NOx emissions at the Roper yard in South Salt Lake are high enough to be detected as a distinct "peak" by the University of Utah TRAX air quality study monitors

The NOx emissions peak observed at the roper yard (~20 switch engines) is equal in magnitude to the peak observed when crossing I-15 which carries on average a count of 200,000 heavy duty diesel trucks per day.

Figure 1 - University of Utah TRAX Monitor Data

Non-road Diesel Clean Air Strategy Showing Progress in EPA Non-Attainment Areas

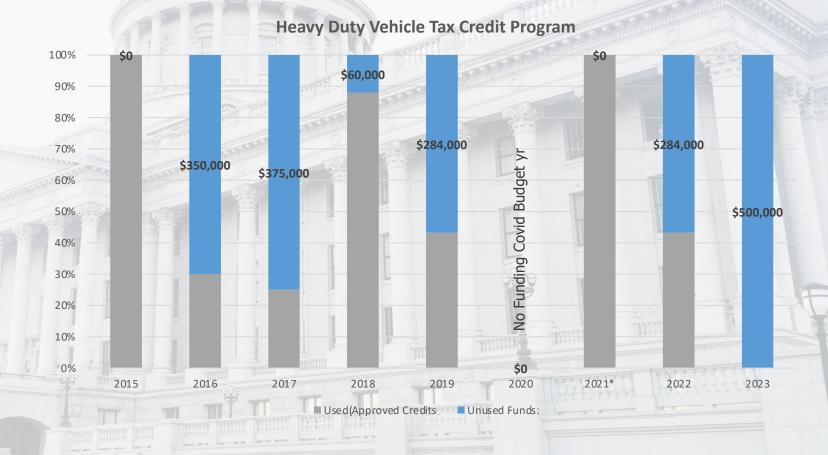
Priority 1: Upgrade switcher locomotives

- a) Inland Port Service Area (UPRR agreement leveraging Inland port & federal grants)

 No Legislation needed
- o) Incentives for other Utah railroads (leverage High-Cost Infrastructure Development Tax Credit)

Priority 2: Idle reduction technology incentive via existing Heavy Duty Vehicle Tax Credit Program

- a) Incentive for railroads
- b) Incentive for non-road construction equipment Future...



Existing Heavy-Duty Vehicle Tax Credit Program (\$500k/yr) (currently only for on-road alternative fuel commercial vehicles)

HB481 expands this to cover idle reduction technology for railroads

Tax Year	Credit	
2015	\$	25,000
2016	\$	25,000
2017	\$	25,000
2018	\$	20,000
2019	\$	18,000
2020	\$	-
2021*	\$	15,000
2022	\$	13,500
2023	\$	12,000
2024	\$	10,500
2025	\$	9,000
2026	\$	7,500

Per unit credit decreases each year

HB481S1: Expand Existing Heavy-Duty Vehicle Tax Credit Program (\$500k/yr)

Expand to "Idle Reduction Technology" for Locomotives

- a) Leverage Existing DAQ program (no new overhead)
- b) Add "Locomotive Idle-Reduction Device" credit
 - 1. Requires application to Division of Air Quality
 - 2. List of EPA approved technologies
 - 3. Tax credit up to 50% of the cost (post performance)
 - 4. Standardize at \$15,000 max credit /unit

Main engine is turned off while 20–40 hp auxiliary power unit (APU), is used to maintain oil / coolant temperature.

How Much Does Idle Control Technology Cost?

The cost of idle control technology depends on its manufacturer. In general, devices for locomotives cost between \$27,000 and \$40,000. This initial investment, however, is more than offset by the fuel saving benefits of the technology. If we conservatively assume switchers burn 3 gallons of fuel per hour and idle 3,000 hours per year, at rough \$2.50 per gallon of fuel, owners can pay for idle control technology through fuel savings in less than 18 months.

