1 | // -*- c++ -*- |
---|
2 | #ifndef HUGO_XY_H |
---|
3 | #define HUGO_XY_H |
---|
4 | |
---|
5 | #include <iostream> |
---|
6 | |
---|
7 | ///\ingroup misc |
---|
8 | ///\file |
---|
9 | ///\brief A simple two dimensional vector and a bounding box implementation |
---|
10 | /// |
---|
11 | /// The class \ref hugo::xy "xy" implements |
---|
12 | ///a two dimensional vector with the usual |
---|
13 | /// operations. |
---|
14 | /// |
---|
15 | /// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine |
---|
16 | /// the rectangular bounding box a set of \ref hugo::xy "xy"'s. |
---|
17 | /// |
---|
18 | ///\author Attila Bernath |
---|
19 | |
---|
20 | |
---|
21 | namespace hugo { |
---|
22 | |
---|
23 | /// \addtogroup misc |
---|
24 | /// @{ |
---|
25 | |
---|
26 | /// A two dimensional vector (plainvector) implementation |
---|
27 | |
---|
28 | /// A two dimensional vector (plainvector) implementation |
---|
29 | ///with the usual vector |
---|
30 | /// operators. |
---|
31 | /// |
---|
32 | ///\author Attila Bernath |
---|
33 | template<typename T> |
---|
34 | class xy { |
---|
35 | |
---|
36 | public: |
---|
37 | |
---|
38 | T x,y; |
---|
39 | |
---|
40 | ///Default constructor: both coordinates become 0 |
---|
41 | xy() : x(0), y(0) {} |
---|
42 | |
---|
43 | ///Constructing the instance from coordinates |
---|
44 | xy(T a, T b) : x(a), y(a) { } |
---|
45 | |
---|
46 | |
---|
47 | ///Gives back the square of the norm of the vector |
---|
48 | T normSquare(){ |
---|
49 | return x*x+y*y; |
---|
50 | }; |
---|
51 | |
---|
52 | ///Increments the left hand side by u |
---|
53 | xy<T>& operator +=(const xy<T>& u){ |
---|
54 | x += u.x; |
---|
55 | y += u.y; |
---|
56 | return *this; |
---|
57 | }; |
---|
58 | |
---|
59 | ///Decrements the left hand side by u |
---|
60 | xy<T>& operator -=(const xy<T>& u){ |
---|
61 | x -= u.x; |
---|
62 | y -= u.y; |
---|
63 | return *this; |
---|
64 | }; |
---|
65 | |
---|
66 | ///Multiplying the left hand side with a scalar |
---|
67 | xy<T>& operator *=(const T &u){ |
---|
68 | x *= u; |
---|
69 | y *= u; |
---|
70 | return *this; |
---|
71 | }; |
---|
72 | |
---|
73 | ///Dividing the left hand side by a scalar |
---|
74 | xy<T>& operator /=(const T &u){ |
---|
75 | x /= u; |
---|
76 | y /= u; |
---|
77 | return *this; |
---|
78 | }; |
---|
79 | |
---|
80 | ///Returns the scalar product of two vectors |
---|
81 | T operator *(const xy<T>& u){ |
---|
82 | return x*u.x+y*u.y; |
---|
83 | }; |
---|
84 | |
---|
85 | ///Returns the sum of two vectors |
---|
86 | xy<T> operator+(const xy<T> &u) const { |
---|
87 | xy<T> b=*this; |
---|
88 | return b+=u; |
---|
89 | }; |
---|
90 | |
---|
91 | ///Returns the difference of two vectors |
---|
92 | xy<T> operator-(const xy<T> &u) const { |
---|
93 | xy<T> b=*this; |
---|
94 | return b-=u; |
---|
95 | }; |
---|
96 | |
---|
97 | ///Returns a vector multiplied by a scalar |
---|
98 | xy<T> operator*(const T &u) const { |
---|
99 | xy<T> b=*this; |
---|
100 | return b*=u; |
---|
101 | }; |
---|
102 | |
---|
103 | ///Returns a vector divided by a scalar |
---|
104 | xy<T> operator/(const T &u) const { |
---|
105 | xy<T> b=*this; |
---|
106 | return b/=u; |
---|
107 | }; |
---|
108 | |
---|
109 | ///Testing equality |
---|
110 | bool operator==(const xy<T> &u){ |
---|
111 | return (x==u.x) && (y==u.y); |
---|
112 | }; |
---|
113 | |
---|
114 | ///Testing inequality |
---|
115 | bool operator!=(xy u){ |
---|
116 | return (x!=u.x) || (y!=u.y); |
---|
117 | }; |
---|
118 | |
---|
119 | }; |
---|
120 | |
---|
121 | ///Reading a plainvector from a stream |
---|
122 | template<typename T> |
---|
123 | inline |
---|
124 | std::istream& operator>>(std::istream &is, xy<T> &z) |
---|
125 | { |
---|
126 | |
---|
127 | is >> z.x >> z.y; |
---|
128 | return is; |
---|
129 | } |
---|
130 | |
---|
131 | ///Outputting a plainvector to a stream |
---|
132 | template<typename T> |
---|
133 | inline |
---|
134 | std::ostream& operator<<(std::ostream &os, xy<T> z) |
---|
135 | { |
---|
136 | os << "(" << z.x << ", " << z.y << ")"; |
---|
137 | return os; |
---|
138 | } |
---|
139 | |
---|
140 | |
---|
141 | /// A class to calculate or store the bounding box of plainvectors. |
---|
142 | |
---|
143 | /// A class to calculate or store the bounding box of plainvectors. |
---|
144 | /// |
---|
145 | ///\author Attila Bernath |
---|
146 | template<typename T> |
---|
147 | class BoundingBox { |
---|
148 | xy<T> bottom_left, top_right; |
---|
149 | bool _empty; |
---|
150 | public: |
---|
151 | |
---|
152 | ///Default constructor: an empty bounding box |
---|
153 | BoundingBox() { _empty = true; } |
---|
154 | |
---|
155 | ///Constructing the instance from one point |
---|
156 | BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; } |
---|
157 | |
---|
158 | ///Is there any point added |
---|
159 | bool empty() const { |
---|
160 | return _empty; |
---|
161 | } |
---|
162 | |
---|
163 | ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) |
---|
164 | xy<T> bottomLeft() const { |
---|
165 | return bottom_left; |
---|
166 | }; |
---|
167 | |
---|
168 | ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) |
---|
169 | xy<T> topRight() const { |
---|
170 | return top_right; |
---|
171 | }; |
---|
172 | |
---|
173 | ///Checks whether a point is inside a bounding box |
---|
174 | bool inside(const xy<T>& u){ |
---|
175 | if (_empty) |
---|
176 | return false; |
---|
177 | else{ |
---|
178 | return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 && |
---|
179 | (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 ); |
---|
180 | } |
---|
181 | } |
---|
182 | |
---|
183 | ///Increments a bounding box with a point |
---|
184 | BoundingBox& operator +=(const xy<T>& u){ |
---|
185 | if (_empty){ |
---|
186 | bottom_left=top_right=u; |
---|
187 | _empty = false; |
---|
188 | } |
---|
189 | else{ |
---|
190 | if (bottom_left.x > u.x) bottom_left.x = u.x; |
---|
191 | if (bottom_left.y > u.y) bottom_left.y = u.y; |
---|
192 | if (top_right.x < u.x) top_right.x = u.x; |
---|
193 | if (top_right.y < u.y) top_right.y = u.y; |
---|
194 | } |
---|
195 | return *this; |
---|
196 | }; |
---|
197 | |
---|
198 | ///Sums a bounding box and a point |
---|
199 | BoundingBox operator +(const xy<T>& u){ |
---|
200 | BoundingBox b = *this; |
---|
201 | return b += u; |
---|
202 | }; |
---|
203 | |
---|
204 | ///Increments a bounding box with an other bounding box |
---|
205 | BoundingBox& operator +=(const BoundingBox &u){ |
---|
206 | if ( !u.empty() ){ |
---|
207 | *this += u.bottomLeft(); |
---|
208 | *this += u.topRight(); |
---|
209 | } |
---|
210 | return *this; |
---|
211 | }; |
---|
212 | |
---|
213 | ///Sums two bounding boxes |
---|
214 | BoundingBox operator +(const BoundingBox& u){ |
---|
215 | BoundingBox b = *this; |
---|
216 | return b += u; |
---|
217 | }; |
---|
218 | |
---|
219 | };//class Boundingbox |
---|
220 | |
---|
221 | |
---|
222 | /// @} |
---|
223 | |
---|
224 | |
---|
225 | } //namespace hugo |
---|
226 | |
---|
227 | #endif //HUGO_XY_H |
---|